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We predict the existence of various types of discrete solitons in arrays of coupled optical cavities endowed
with a quadratic nonlinearity. We derive mean-field equations and determine their range of validity by com-
paring results with those from the original round-trip model. By using an analytical approach we identify
domains in parameter space where solitons can potentially exist and describe their asymptotic behavior. Taking
advantage of these results, we numerically find discrete solitons of different topologies. Some of them are
unique to discrete models. Ultimately, we study the stability of these soliton solutions and find that discreteness
appreciably influences this behavior.
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I. INTRODUCTION

Discrete systems, such as semiconductor superlattices,
molecular chains, waveguide arrays, or coupled pendulums,
share many interesting and somehow intriguing features. Re-
cently much progress has been made in experimentally and
theoretically studying intrinsic light localization in evanes-
cently coupled waveguide arrays, a prominent example of a
discrete system. Light propagation in such arrays exhibits
striking anomalies in comparison with beams propagating in
usual continuous systemssfilm waveguides, bulk mediad.
The theoretical predictions of “discrete diffraction” phenom-
enaf1g provided the basis for numerous experimental obser-
vations. The particular advantage of “discrete diffraction” is
the possibility to be controlled in size and sign by the input
conditions f2–5g. Diffractive beam spreading can even be
arrested and diverging light can be focused.

Consequently, solitary waves are likewise expected to be-
have differently in discrete systems compared with continu-
ous ones. In 1988 Christodoulides and Josephf6g predicted
the existence of discrete solitons in waveguide arrays with
Kerr nonlinearity. Later this concept was successfully ap-
plied to light localization in quadratic waveguide arrays
where several additional features have been identified, such
as, e.g., the formation of discrete solitons with different to-
pologies compared to the Kerr casef7g. For the limiting case
of strong localization analytical soliton solutions were de-
rived f8g. Later, optical domain walls and quasirectangular
localized modes were foundf9g. Eventually, following these
theoretical predictions the existence of discrete solitons has
been experimentally verified in both cubicf10g and quadratic
waveguide arraysf11g.

Up to date most investigations have focused on conserva-
tive discrete optical systems. A logical step is to extend these
studies to dissipative systems where gain and loss play a
significant role. A technologically feasible implementation is
a nonlinear waveguide array with dielectric mirrors at the
end facesfarray of coupled zero-dimensionals0Dd Fabry-
Pérot resonatorsg where radiation losses can be compensated
for by a driving or pump field.

Over the years a bundle of nonlinear effects has been
studied in 1Dsfilmd and 2Dsbulkd Fabry-Pérot cavitiesscon-

tinuous systemd where canonical diffraction occurs. The si-
multaneous presence of losses and a driving field has a sig-
nificant effect on the physics of the system. Moreover,
nonlinear effects occur for much less power compared to
single pass configurations because of resonant field enhance-
ment in the cavity. But it is well known that the interplay of
feedback, loss, gain, and nonlinearity leads to a considerably
richer dynamical behavior than that observed in conservative
environments. The system can adapt to the driving field in
different ways, giving rise to multistabilityf12g, and, as con-
sequences, pattern formationf13–17g, and other types of spa-
tial self-organization. In particular, so-called cavity solitons
sCSsd may exist on a stable and preferably flat background
sfor a recent review seef18g and reference thereind. They
represent localized defects and can either locally increase
sbright CSsd or decreasesdark CSsd the transmission of the
Fabry-Pérot cavity. Once excited by a local change of the
incident field, in principle, they stay forever on a flat holding
beam, even if the initial excitation has been switched off.
Such robust self-contained localized structuressCSsd were
observed in different configurations, namely, in cavities with
saturable absorbersf19g, in semiconductor microresonators
f20,21g, in cavities with the Kerr nonlinearityf22g, in cavi-
ties with a quadratic nonlinearity for both the up-fsecond-
harmonic generationsSHGdg f23,24g and down-conversion
casessoptical parametric oscillatord f25–27g. It was found
f18g that CSs exist preferably in the vicinity of subcritical
bifurcations of the homogeneous solution of the nonlinear
system. The concepts of cavity solitons and pattern forma-
tion were confirmed experimentally in semiconductor mi-
croresonatorsf28–30g.

As suggested above it was only natural to extend these
studies to discrete systems. Recently, the existence and prop-
erties of discrete cavity solitons were studied in an array of
coupled waveguide cavities endowed with the Kerr nonlin-
earity f31g.

In the present paper a detailed theoretical investigation of
discrete cavity solitons in quadratic nonlinearities is per-
formed. The first part of the paper is devoted to the deriva-
tion of mean-field equations from the more fundamental, but
also more cumbersome, round-trip model. Although per-
formed many years ago for continuous systemsf13g and very
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concisely for discrete systems with the Kerr nonlinearity
f31g, it seems to be in order to work out this approximation
in detail for the more involved case of quadratic nonlineari-
ties. By using this mean-field model we perform a compre-
hensive study of the dynamical behavior of this discrete qua-
dratic system. This includes an analysis of the homogeneous
nonlinear statessdiscrete plane wavesd and their stability
properties, the application of an analytical approach for dis-
closing the effect of the numerous system parameters on the
complex behavior, in particular, the identification of domains
in parameter space where discrete cavity solitonssDCSsd of
different topologies may exist. Then, we derive numerically
various types of quadratic cavity solitons and study their
stability. Eventually, we identify the limits of the mean-field
model by comparing the results with those obtained by using
the round-trip model.

II. MATHEMATICAL MODEL

Here we consider an array of coupled single-mode wave-
guide cavities endowed with a quadratic nonlinear material
and high-finesse dielectric mirrors at the end facesssee Fig.
1d and restrict ourselves to the up-conversion case where
radiation losses are compensated for by an external driving
field at the fundamental frequencysFFd. We assume that the
system is doubly resonant for both the FF and the second-
harmonic fields and that phase matching is approximately
achieved by periodically poling the materialfquasi-phase-
matchingsQPMdg. In addition, the cavities are assumed to be
short compared with both the linear coupling length and the
nonlinear coherence length and that frequency conversion
within a single round trip is small. Hence, all the processes
we are looking for, as evanescent coupling or frequency con-
version, will evolve upon many round trips and can be re-
garded as genuine cavity effects.

Basically, we restrict our considerations to a quasi-infinite
and homogeneous chain of identical weakly coupled high-Q
cavities sFig. 1d. It is well known that mean-field models
apply to 1D and 2D high-finesse cavities, no matter whether
cubic f13g or quadraticf24g nonlinearities are involved. But
it is not evident what these mean-field equations look like in

the discrete case and, in particular, how the real cavity pa-
rameters are related to the mean-field parameters. To shed
some light onto this issue we are going to derive the respec-
tive mean-field equations in an array of quadratic cavities,
similarly to, but in more detail than, was done for cubic
nonlinearities inf31g.

We start with the well-known evolution equations for the
slowly varying envelopes of the forwardu+,v+ and backward
propagatingu−,v− field amplitudes in evanescently coupled
waveguides, taking into account quadratic nonlinearitiesf1g
as
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respectively, andPF,S= 1
4 edx dyfEW F,S3HW F,S
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varying envelopes are normalized such, that their squared
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at the respective frequency. The propagation constantsbF,S
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their spectral derivatives asṼF,S
−1 =]b /]vuv=vF,vS

. They also
enter the phase mismatchDb=2bF−bS+n2p /L between FF
and SH waves. Heren is an integer andL the poling period
of the QPM grating. The nonlinear coupling of FF and SH is
mediated by a type I interaction, where the corresponding
nonlinear coefficient has the form
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Because we assume Kleinman symmetry the nonlinear coef-
ficient, which drives SHG, is identical.

The coupling strength between adjacent waveguides sepa-
rated byDx is determined by

FIG. 1. Array of coupled waveguide cavities with mirrors at the
end facets.
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HereD«sx,yd represents the change of the dielectric coeffi-
cient created by an adjacent guide.

The optical response of the mirrors enters Eqs.s1d as
boundary conditions atz=0,l of the form
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where the phaseFF,S=bF,Sl +wF,S contains the propagation
termbF,Sl as well as the shiftwF,S caused by reflection at the
mirrors. For convenience, we assume a symmetric cavity
with nonabsorbing mirrors and the amplitude reflection co-
efficientsrF ,rS. Each waveguide is excited by the respective

driving field Wn, which is given by the overlap of the modal
field with the externally applied field as
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whereHW extsx,y,z=0,vFd is the transverse component of the
complex magnetic field at the entrance facet of the wave-
guide andTF the transmission coefficient of the front mirror.

After having performed the Fourier transformation in Eq.
s1d with respect to timet and position n as Uq
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±st ,zdexpsivt− iqnd, we can integrate the remain-
ing ordinary differential equations with respect to the propa-
gation coordinatez. Thus, the amplitudes within the cavity
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Un

±sv ; ld ,Vn
±sv ; ld as

Uq
±sv;zd = Uq
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where the exponential function in the integral represents the Green’s function. In a next step we replace the fields in the kernel
of the integrals by their values at the boundaries, thus assuming the linear field profile to be maintained in the cavity. Adding
the boundary conditionss2d we get in lowest nontrivial order
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+sv; lde−isv/ṼF+2cF cosqdl −
ixeff

s2d

2pN
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where the boundary conditions have been used to replaceUq
−sv ; ld ,Uq8−q

− sv8−v ; ld, andVq8
− sv8 ; ld in Eqs.s3bd ands4bd. Next,
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we carry out the integration overz8 in Eqs. s3d and s4d. Assuming that temporal walk-off and “discrete diffraction” only

marginally effect the nonlinear interaction during a single passage we neglect the terms withṼF,S,cF,S in the exponent of the
nonlinear parts. Then, Eqs.s3bd and s4bd are subtracted from Eqs.s3ad and s4ad, respectively. This leads to expressions
containing only the forward propagating fieldsUq

+svd ,Vq
+svd at z= l:

Uq
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2eiDFF+isv/ṼF+2cF cosqdlg − Wq

=
ixeff

s2d

2pN
sincSDbl

2
DsrF

2rSe
iDFSeiDbl/2 + eiDbl/2dlE

−`

`

dv8o
q8

Uq8−q
+* sv8 − vdVq8

+ sv8d,

Vq
+svdeiDFSfe−iDFS−isv/ṼS+2cS cosqdl − rS
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whereDFF,S=FF,S−bF,S
res is the respective detuning from the

nearest cavity resonance 2bF,S
resl =2pm sm=1,2,…d. As usual

the mean-field model holds only near a longitudinal cavity
resonanceDFF,S!2p and walk-off, frequency conversion,
and coupling have to be small for a single passage

svl / ṼF,S!1,cF,Sl !1d. Hence, the exponentials on the right-
hand side of Eq.s5d are close to unity and can be linearized.
It is worth to note that we intentionally extract the phase
term from the square brackets of Eq.s5d for the sake of
minimization of higher-order errors throughout the Taylor
expansion. As a preliminary result we obtain a set of mean-
field equations in Fourier space:
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After having performed the inverse Fourier transformations
the appropriately scaled evolution equations for the slowly
varying envelope of the transmitted FFsund and the SH field
svnd in the nth waveguide read as
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where the evolution timeT is scaled to the FF photon life-

time tph=fs1+rF
2d / s1−rF

2dglṼF
−1. The systems6d is the set of

mean-field equations describing the field dynamics in an ar-
ray of coupled quadratic cavities.

The cavity parameters are related to the mean-field pa-
rameters as follows. The detunings of both fields from the
respective cavity resonances read as
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+rS
2dg / fs1−rF

2d / s1+rF
2dg. The normalized coupling strengths

are related to the coupling constants asC1=ṼFtphcF , C2

=ṼStphcS and the normalized optical field amplitudes are
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In experimental setups the SH field is usually much more
confined in the transverse direction than the FF fieldf11g;
thus, the coupling is much less and can be neglectedsC2

=0d. As a consequence stationary solutions of the systems6d
simplify considerably because the SH field can be expressed
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by the FF one asvn=−un
2/ sid+D2d and only the FF compo-

nents appear in the final set of equations as

si + D1dun −
1

id + D2
uunu2un + C1sun−1 + un+1d − 2C1un = E.

s8d

Evidently, in the stationary limit the quadratic nonlinearity is
mimicked by a complex-valued cubic one. Therefore station-
ary solutions will be similar to those derived inf31g provided
that SH losses are smallsd<0d. However, this simplification
does not hold for the full dynamical solutions. Hence, typical
effects of the quadratic nonlinearity will mainly show up
when the field evolution and the stability behavior of station-
ary solutions are under investigation.

III. PLANE WAVE SOLUTIONS AND THEIR STABILITY

The simplest solution of Eq.s6d is the transversally ho-
mogeneous state where all cavities are equally excited. Ex-
cept for modifying the stability behavior, the coupling has no
effect in this case. This homogeneous or plane wavesPWd
solution is determined by the properties of the isolated cav-
ity. However, PW solutions play a key role with regard to the
existence and stability of DCSs, which are localized objects
on a homogeneous background. A stable DCS requires the
stability of the underlying PW background. Moreover, the
so-called critical points in parameter space where PW solu-
tions destabilize are potential bifurcation points for DCSs.
Therefore, the investigation of PW solutions and their stabil-
ity properties is a prerequisite for the identification of DCSs.

The intensities of the stationary PW solutionssuunu2
= ub1u2 for the FF anduvnu2= ub2u2 for the SH of Eq.s6d are
f12,16g

fub1u4 + 2sd − D1D2dub1u2 + sD1
2 + 1dsD2

2 + d 2dgub1u2

= sD2
2 + d 2dE2, ub2uÎD2

2 + d2 = ub1u2. s9d

The formation of DCSs is closely related to the existence of
bistable solutions of Eq.s9d, which is realized, provided that

uD2usuD1u − Î3d
Î3uD1u + 1

. d, D1D2 . 0, s10d

holds. Thus, for PW bistability the fundamental detuningD1
has to exceed the critical value ofÎ3 and the signs of FF and
SH detunings have to coincidesFig. 2d.

Having found the PW solutions they have to be probed
against stability. In what follows we combine the usual linear
stability analysis with the search for asymptotic solutions,
which resemble the linear limit of soliton tails. The latter
issue is of particular importance because we can easily iden-
tify domains in parameter space where various kinds of soli-
ton solutions are expected to exist. To tackle both tasks we
use a unified mathematical approach in looking for solutions
to s6d close to PW background as

sun,vn,un
* ,vn

*d = sb1,b2,b1
* ,b2

*d + sa1,a2,a1
* ,a2

*d

3expfsl8 + il9dT + sa + ibdng. s11d

According to this ansatz linear perturbations can spatially
grow or decay saÞ0d or oscillate sbÞ0d. Linearizing
the evolution equationss6d around the PW solution
sb1,b2,b1

* ,b2
*d with respect to the perturbation amplitudes

sa1,a2,a1
* ,a2

*d we obtain

sG8 + iG9da1 + iSd1 +
2ub1u2d2

d2
2 + sD2

−d2Da1 + SD1
− −
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−

d2
2 + sD2

−d2Da1

+ S id − D2

d2 + D2
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2a1
* = 0,
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* − iSd1 +
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d2
2 + sD2
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* + SD1

+ −
2ub1u2D2

+

d2
2 + sD2

+d2Da1
*

+ S− id − D2

d 2 + D2
2Db1

*2a1 = 0, s12d

where we have introduced effective lossesd1=1+l8 and
d2=d+l8, detunings D1,2

± =D1,2±l9, and discrete diffrac-
tion coefficients G8=2C1scosha cosb−1d and G9
=2C1 sinha sinb.

From Eq.s12d we can extract information about the exis-
tence and stability of asymptotically increasing or decreasing
and periodic solutions.

First we deal with the usual PW stability issue by setting
a=0. The solution is stablesdecaying perturbationd for l8
,0, and unstablesgrowing perturbationd for l8.0. Critical
points in parameter space are marked by a stability transition
at l8=0. Depending on the spatial modulationb of the per-
turbation and on the imaginary partl9 of the respective ei-
genvalue at the critical pointssl8=0d, we may distinguish
between homogeneous instability forb=0 and modulational

FIG. 2. FF amplitude of PW solutions vs the driving field am-
plitude E. Solid line, stable; thin dashed line, homogeneously un-
stable; thick dashed line, modulationally unstable. The horizontal
dashed lines divide PW solutions into three parts with different
asymptotic behavior. LPs designate the limiting points of bistability.
sC1=0.5,D1=−5,D2=−2,d=0.6.d
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instability sMI d for bÞ0. The growth of the instability may
be purely exponentialsl9=0d or oscillating sl9Þ0, Hopf
bifurcationd.

From the derived stability criteria we can now distinguish
between different domains in parameter space, which are
plotted in Fig. 3. In domain I the PW solution is trivially
unstable. It corresponds to the middle branch of the hyster-
esis loopsFig. 2d and is confined by the limiting pointssLPsd
of bistability following from Eq.s9d as

ub1uLP
2 =

1

3
f2sd − D1D2d ± Î4sd − D1D2d2 − 3sD1

2 + 1dsD2
2 + ddg.

s13d

PW solutions in domains II and III are subject to modu-
lational or Hopf instability, respectively. Both domains will
be dealt with below. It is worth noting that a certain driving
field amplitudeE corresponds to multiple values for the FF
PW solutionub1u. Thus, it is convenient to use the PW am-
plitude as a parameter rather thanE, which easily follows
from Eq. s9d.

IV. ASYMPTOTIC BEHAVIOR

As was discussed in the previous section, the first neces-
sary condition for the existence of spatially localized solu-
tions, i.e., cavity solitons, is a stable PW background. Obvi-
ously, the soliton tails have to converge to the PW
background far from the soliton center. Therefore, the second
evident condition is the existence of spatially increasing and
decreasing solutions around the PWs. A linear theory for the
description of the soliton tails can be applied, provided that
the amplitude does not deviate too much from the PW back-

ground. According to this approximation the tails decrease
exponentially ase±sa+ibdn. Therefore, a localized solution can
exist only if the real part of the exponent is nonzerosa
Þ0d. Furthermore the imaginary partb determines the type
of DCS, since forbÞ0 we observe spatially oscillating tails.

The solvability conditions of Eq.s12d and requiring sta-
tionarity sl8=0,l9=0d yield the characteristic equation

cosha cosb − 1 + i sinha sinb = sG1 ± ÎG2d/2C1 s14d

with

G1 = − D1 +
2ub1u2D2

d 2 + D2
2 , G2 =

ub1u4

d2 + D2
2 − S1 +

2dub1u2

d 2 + D2
2D2

.

s15d

Depending on the functionsG1 and G2, Eq. s14d exhibits
different types of solutions. The lines in parameter space
whereG1 andG2 change their signs are indicated in Fig. 3.
These lines divide the parameter spacefub1u ,D1g into four
regions, namely, the domainsA,G1,0,G2.0; B,G1
,0,G2,0; C,G1.0,G2,0; andD ,G1.0,G2.0.

To analyze the set of possible asymptotic solutions of Eqs.
s14d and s15d we consider separately these four parameter
domains.

In parameter domainA sG1,0,G2.0d a possible solu-
tion of Eq. s14d is

a = 0, b = arccosS1 +
1

2C1
sG1 ± ÎG2dD . s16d

Thus, the small amplitude solutions are purely oscillating
sbÞ0d and do not increase or decrease in transverse direc-
tions. At least one of the solutionss16d is real valued, pro-
vided that the system parameters satisfy the inequality

4C1 ù − G1sub1u,D1d − ÎG2sub1u,D1d. s17d

At each parameter point where the inequalitys17d holds a
spatially modulated perturbation with the corresponding
wave vectorb is stationary. Hence, it is neither growing nor
decaying, but just on the verge of destabilization. Hence, if
the PW background allows for a solution of the forms16d, it
is modulationally unstable. Therefore, the inequalitys17d
marks the right boundary of domain IIssee Fig. 3d. This
boundary fsign of equality in Eq.s17dg coincides exactly
with the limiting point of bistabilitys13d for weak coupling
sC1=0d. It is interesting to note that the asymptotic solution
becomes always staggeredsb=p; opposite sign of ampli-
tudes in adjacent waveguidesd on the boundary of this do-
main.

A typical multistable plane wave response is shown in
Fig. 2. The modulational instability of the upper plane wave
branchsdomainAd leads to the formation of a periodic pat-
tern with a spatial period determined byb. Provided that the
pump amplitude allows for a second stable PW background
smultivalued solution in Fig. 2 between LPsd one cell of it
can be extracted to form a bright DCS on the stable low-
amplitude backgroundsdomainC in Figs. 2 and 3d. This case
will be considered in the following section.

FIG. 3. Domains of stable and unstable discrete PW solutions in
parameter space defined by the FF detuningD1 and the FF ampli-
tude ub1u. Instability domains are shadedfhomogeneoussId, modu-
lational sII d, and Hopf sIII d instabilityg. The vertical dashed line
corresponds to the curve in Fig. 2. Thick dashed lines designate the
change in sign ofG1 and G2 fEqs. s15d, whereas these signs stay
unchanged within domainsA, B, C, and D. sC1=0.5,D2=−2,d
=0.6.d
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V. DISCRETE CAVITY SOLITIONS

A. Bright solitons

The scaled coupling constantC1 depends on the wave-
guide spacing as well as on the mirror reflectivities and can
be varied in a wide range. In the “quasicontinuous” limit
sstrong couplingd Eq. s6d reproduces the effects known from
conventional planar cavities, such as, for example, transla-
tional symmetry. On the contrary effects of discreteness
dominate if the coupling tends to vanish, which can be
achieved by increasing the distance between the cavities. In
this so-called “anticontinuous” limit the individual cavities
are virtually isolated. For vanishing coupling each cavity is
not affected by its neighbors. In this trivial case the solitons
are constructed by a combination of amplitudes in the iso-
lated cavities, which assume one of three stationary states
provided that the response of the isolated cavity is multival-
ued sFig. 4 for C1→0d. For example, “odd”s“even”d DCSs
are localized states where onestwod cavity is switched to a
high stable level on a low-level background. Increasing the
coupling strength the adjacent cavities get involved in the
power exchange. The “trivial” localized solution becomes
wider and nonlinear effects compensate for the transversal
spreading due to discrete diffraction. Because the focusing
environment is preferable for bright localized structures, we
consider first a negative SH detuning from the cavity reso-
nancesD2,0d. This choice is evident from Eq.s8d because a
specific SH detuning results in either an effective focusing
sD2,0d or defocusingsD2.0d behavior f16,24g. Usually
effective focusing allows one to find bright solitons for any
coupling strength up to the quasicontinuous limitsFig. 4 for
C1→`d. As expected the difference between odd and even
solitons disappears for the very strong coupling.

The lower branch of the plane wave solution in Fig. 2 is a
typical background for DCSs considered here. It corresponds
to domainsC andD in Fig. 3. The soliton tails have to fit the
asymptotic solutions around its background. Solving the

characteristic equationss14d for both domains we can con-
clude that the background allows for spatially exponentially
increasingsdecreasingd solutions. The corresponding coeffi-
cients can be obtained easily in domainD as

a± = arccoshf1 + sG1 ± ÎG2d/2C1g, b = 0. s18d

By contrast, asymptotic stationary solutions are slightly os-
cillating in domainC:

a ù arccoshs1 + G1/2C1d,

b ø arcsinfÎ− G2/ÎG1sG1 + 4C1dg . s19d

It is clear from Eq.s19d that close to the lineG2sub1u ,D1d
=0 the length of the corresponding spatial oscillations grows
to infinity. Moreover the ratiob /a is very small and in-
creases considerably only close to the boundary with domain
BfG1sub1u ,D1d=0 in Fig. 3g. Therefore DCSs possess mono-
tonically decreasing tails without or with only slight spatial
oscillations in domainsC andD.

The asymptotic solutions contain information about typi-
cal scales of spatial inhomogeneities of the localized struc-
ture. Therefore the typical extension of the DCS can be ana-
lytically evaluated. Evidently, this method fails for the
evaluation of the soliton half-width, because the genuine
nonlinear solution is required. But usually it is more impor-
tant to know the minimal width the soliton requires to exist
without interacting with its counterparts. It is clear that this
“soliton diameter” exceeds the soliton half-width. Thus, this
width can be roughly estimated in requiring that the tails
have decreased to about 10% of the peak amplitude giving
the number of waveguidesd as

d = 2 ln 10/a. s20d

Now we use Eqs.s18d and s19d to apply this formula in
domainsC andD and get for sufficiently large couplingsand
G1@ÎG2 for domainDd:

d < 6.51ÎC1/G1. s21d

Actually this approximation describes surprisingly well the
DCS width for any coupling constant except a small domain
close to the anticontinuous limitsC1→0d ssee white dashed
line in inset of Fig. 4d.

We start with a detailed discussion of the usually stable
odd DCS and will come back to even DCSs below. A typical
profile of an odd stable bright DCSsdomainDd is displayed
in Fig. 5. The shaded part corresponds to the analytically
estimated widthfEq. s21dg. The amplitude of soliton tails
deviates only slightly from the PW background and can be
therefore approximated by our analytical modelsin domain
Dd as

Un
± = Fia±Îsd + iD2dS1 +

2dub1u2

d 2 + D2
2 ± iÎG2D

3expsa±nd + ub1uGeiwb s22d

whereb1= ub1ueiwb is the FF plane wave background anda±
are arbitrary real amplitudes which determine the contribu-

FIG. 4. Maximum FF amplitude of odd and even DCSs vs the
coupling constantsdashed line, unstable solutionsd. The insets show
selected DCS profiles and the dependence of the width of odd DCSs
on the coupling constantfcontour diagram, numerical solution;
white dashed line, analytical evaluations21dg. Parameters:E=9,
D1=−6,D2=−2,d=0.6.
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tion of independent exponential solutions witha+ and a−

fsee Eq.s18dg. Figure 5 displays the agreement between the
tails of the genuine DCS and the asymptotic approximation.

Usually, cavity solitons exist on branches in parameter
space, which bifurcate from PW branchesf18,24g. Indeed, as
plotted in the inset of Fig. 5, bright DCSs bifurcate subcriti-
cally from the limiting point of PW bistability and stabilize
behind the turning point of the respective branch. For there is
no appropriate background, no DCS can be found beyond the
PW bistability limiting point.

It is interesting to look at the difference of stable and
unstable DCSs for driving fieldE close to the bifurcation
point sright LP in inset of Fig. 5d. Solving Eq.s18d provides
that a−→0 close to LP. Therefore, according to Eq.s20d the
localized solution becomes flat in the bifurcation point:d
→`. This explains intuitively the bifurcation of DCS
branches from PW solutions in the LP. Thus the approxima-
tion s21d fails in this case and the width of stable DCSs is
determined bya+. Hence, the occurrence of two soliton tails
with different spatial decay rates reflects the coexistence of
stable and unstable solitons being both situated at the soliton
hysteresis curve.

Detailed studies show that the size of the bright DCS
existence domain increases considerably with negative cav-
ity detuningD1.

B. Soliton with oscillating tails

The quadratic DCSs discussed up to now existed in do-
mains of parameter space where PW bistability takes place.
To find out whether DCSs may also exist without an under-
lying PW bistability we are now going to search for DCS
solutions in domainB.

Some peculiarities of this particular DCS type can be
again understood by taking advantage of the asymptotic
analysis. As mentioned before the DCS tails exhibit an oscil-
lating behavior near the boundary to domainB fG1→0 in
Eq. s19dg. A typical DCS profile in domainB is displayed in
Fig. 6. According to our analysis the exponents of asymptotic
solutions satisfy

cosha cosb = 1 +G1/2C1, sinha sinb = ± Î− G2/2C1,

s23d

requiringaÞ0 andbÞ0. Thus, the DCSs exhibit oscillating
tails, which can be approximated as

Un = A1 expfsa + ibdng + A2 expfsa − ibdng, s24d

whereA1 is an arbitrary complex amplitude andA2 is deter-
mined by

A2 = A1
* sd − iD2d

b1
*2 hÎ− G2 + f1 + 2ub1u2d/sd 2 + D2

2dgj.

By varying A1 one can fit the tails24d to the numerically
calculated soliton tailsthick solid line in Fig. 6d. Equation
s20d approximates the soliton width shown by the shaded
area. The oscillating tails suggest that bound states of DCSs
can be formed. Therefore, it is no surprise that the respective
soliton branches are multistablessee Fig. 7d, where every
higher-order soliton represents a new bound state with an
additional hump. The oscillation period of the tails and, thus,
the distance between peaks can be approximated asP
=p /b. The highest-order bound state is an infinite periodic
pattern which connects the DCS branch with the modulation-
ally unstable domainsvertical line in Fig. 7d. Hence, the
stable background close to the MI domain can coincide with
a stable periodic pattern. It is evident from Fig. 7 that the
existence domain of bright DCSs increases with decreasing
coupling constant.

FIG. 5. FF field profile of a typical bright DCS with the corre-
sponding analytical approximation for the tails forE=9.13. The
shaded area designates the effective soliton width obtained analyti-
cally. Inset: FF amplitude of PW solution and maximum FF ampli-
tude of bright DCS vs the pump amplitudeE. Dashed lines corre-
spond to homogeneouslysthind and modulationallysthickd unstable
states.sC1=4,D1=−6,D2=−2,d=0.6.d

FIG. 6. FF field profile of a stable first-order DCS with oscillat-
ing tails. The shaded area designates the effective soliton width. The
thick solid line corresponds to the analytical approximation of the
soliton tails.sE=5.3635,C1=0.75,D1=−4,D2=−2,d=0.6.d
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C. Dark staggered solitons

Now we proceed to inspect the upper PW branch, which
is displayed in Fig. 2, and belongs to domainA in Fig. 3. For
negative detunings this branch is modulationally unstable be-
yond the limiting point. According to Eq.s17d the size of the
instability domain increases with the coupling constantC1,
shown in Fig. 8 by dashed lines. We have shown before that
in this parameter domain spatially periodic solutionss16d
exist excluding the formation of DCSs. However, it turns out
that outside the MI domainsdomainA at the right side of the
MI in Fig. 3d there are only asymptotically decreasing or
increasing solutions of Eq.s14d which read as

a± = arcoshS− 1 +
1

2C1
s− G1 7 ÎG2dD, b = p. s25d

The corresponding small-amplitude distributionUn
± is given

by Eq. s22d with the exponenta±n+ ipn and a± from Eq.
s25d.

Accordingly, we found a dark DCS branch bifurcating
subcritically from the critical point at the termination of the
MI domain sDCS branch in the inset of Fig. 9d. The stable
part of this branch can either terminate exactly at the point of
MI or turn back to form a multistable dark soliton branch.
The first case is typical for large negative cavity detuning,
where the oscillating solutions16d destroys the background
in the MI point. The second case occurs near nascent PW
bistability srelatively small negative detuningd and higher-
order solitons have several intensity dips. The asymptotic
DCS tailsUn

± exhibit a phase differencep between adjacent
waveguidessstaggered solutiond, which is a signature for dis-
crete systems. Together with the PW background the soliton
tails look sawtoothlike. The asymptotic behavior of the tails
is determined by the linear combination of the two solutions
s25d. It can be seen in Fig. 9 that far from the soliton center
the analytic solutions25d coincides exactly with the tails of
the numerically determined dark soliton. Equations20d gives
again the dark soliton width shown as the shaded area in Fig.
9. Close to the bifurcation point we havea−→0, and hence
the unstable dark DCS transforms into the staggered PW
solution at the onset of MI.

It is interesting to note that this dark DCS branch has no
connection with the bistable domain of the PW hysteresis
curvesinset of Fig. 9d. The hysteresis curve of the dark DCS
is usually several times larger in parameter space than the
corresponding PW bistability domain. On increasing the cou-
pling constant, the existence domain of the dark DCS moves

FIG. 7. Maximum amplitude of the FF component of bright
DCSs with oscillating tails vs the holding beamE for different
coupling constantssD1=−4,D2=−2,d=0.6d.

FIG. 8. Existence domain of dark DCS in the parameter plane of
FF detuningD1 and FF amplitudeub1u for different coupling con-
stantsC1 sshaded black areas confined by solid thick linesd. The
dashed lines are boundaries of modulational instabilities for the
corresponding coupling. The PW background is homogenous and
Hopf unstable in I and III, respectivelysas in Fig. 3d. Parameters:
D2=−2,d=0.6.

FIG. 9. Profile of dark DCS and the corresponding analytic ap-
proximation of the tails forE=8.2. Inset: FF amplitude of PW so-
lutions and minimum amplitude of dark discrete cavity soliton
branch vs pump amplitudeE. Dashed lines correspond to unstable
states.sC1=0.5,D1=−4.5,D2=−2,d=0.6.d
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to larger PW amplitudesub1u and large negative cavity detun-
ing sFig. 8d.

VI. STABILITY OF BRIGHT DISCRETE SOLITONS

After having found “odd” and “even” bright DCSs we
probe these solutions against their stability as it depends on
the coupling constantC1. To this end the usual linear stability

analysis has been performed. Usingūn=Ūn+ āne
lT we linear-

ize the governing equations6d around small perturbations

ān=sa1n,a2n,a1n
* ,a2n

* d of the stationary solution Ūn

=sUn,Vn,Un
* ,Vn

*d. To disclose the main stability properties of
odd and even DCSs it is convenient to select bright DCSs in
domainsC andD ssimilar to profiles shown in Figs. 4 and 5d.

In the anticontinuous limitsC1=0d the stability is deter-
mined by the stability in a single cavity and does not depend
on the DCS symmetry. The DCS has eight eigenvalues for
C1=0 which are pairwise complex conjugated. Half of them
belong to the PW background and the rest corresponds to the
up-switched high-level cavity state in the soliton center. To
give specific examples we concentrate on a parameter set, for
which all these eigenvalues have the same real part, namely,
Rel=−1; thusl=−1±iv. This condition is well satisfied in
a wide range of the PW hysteresis loop, provided that photon
lifetimes are equal for FF and SH fieldssd=1d.

First of all we are interested in the mechanism of desta-
bilization of the even DCS for some critical coupling
strength. The evolution of the imaginary part of the even
soliton eigenvaluesv is sketched in Fig. 10 for our particular
example. Herevh=1.264 andvl =0.951 describe the high-
and low-level cavity states corresponding to the case of van-
ishing coupling. However, the eigenvalue degeneracy disap-
pears with increasing coupling strength. Thus the low-power-
state eigenvaluevl splits into a continuous bandsFig. 10d.
By contrast, the high-power-state eigenmodevh splits

into two eigenmodes, namely, into a symmetricĀsym

=s… ,0 ,ā,ā,0 ,…d and an antisymmetricĀsym=s… ,0 ,ā,
−ā,0 ,…d one. These eigenmodes are well localized around
the soliton center provided that the coupling constant is still
small. Therefore their imaginary parts can be approximately
described by the following quadratic equations forv2:

v4 + v2fuV0u2 − 4uU0u2 − sD18
2 + D2

2dg + 4uU0u2suU0u2 − D18D2d

− uV0u2D2
2 + D18

2D2
2 = 0, s26d

whereD18 corresponds toD18=D1−C1 for the symmetric and
D18=D1−3C1 for the antisymmetric modes.U0 andV0 are the
field amplitudes in the DCS center. Equations26d has two
independent zeros with respect tov2. Here we only consider
the solution with the lower value ofv2, because only this one
will finally destabilize. Assuming that the fundamental field
amplitude in the DCS center depends linearly on the cou-
pling constantC1 and solving Eq.s26d we find the eigen-
value of the antisymmetric linear mode of the even DCS for
small couplingssee analytical curves in Fig. 10d. First, Eq.
s26d has real-valued solutions and the corresponding two
antisymmetric eigenvalueslasym

± =−1±ivasym are stablessee
Fig. 10d. But, for increasing couplingv2 becomes negative
and therefore the solutions of Eq.s26d become imaginary
thus compensating for the negative real part of the eigen-
value. Finally the even DCS loses stability for increasing
coupling ssee inset of Fig. 10d. Obviously, for stronger cou-
pling the considered eigenmodes spread out to several cavi-
ties and the approximations26d is no longer valid.

Direct numerical calculations show that the eigenvalue of
the antisymmetric eigenmode finally converges exponen-
tially to zero for increasing coupling constant. This mode
transforms to the so-called translational modessee solid line
in Fig. 11d known in continuous models with translational
symmetryf32g. The analytical analysis of the eigenmodes of
odd DCSs is more involved. The antisymmetric mode bifur-

FIG. 10. The imaginary and real partssin insetd of the eigen-
value of the linear mode for an even DCS vs the coupling constant.
sE=11.2,D1=−5,D2=−6,d=1.d The dashed solid line is the ana-
lytical approximation.

FIG. 11. The maximal growth rate of the linear mode of odd
sdashedd and evenssolidd DCSs vs the coupling constant. Inset:
dynamics of a purely oscillating soliton solution.sE=21,D1

=−4.9,D2=−23,d=0.4.d
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cates in our example from the plane Rel=−1 as well but
unlike the even DCS, it does not lead to soliton instability.
This mode also converges to the quasitranslational mode
and, therefore, its eigenvalue converges to zero for large cou-
pling constant as wellssee dashed line for large coupling in
Fig. 11d.

There is one more interesting eigenmode of the DCS,
which is more prominent for odd DCSs. This mode appears
due to the interactions of a localized eigenmode with the
continuous spectrum of the soliton background and its eigen-
value possesses an imaginary partsdashed line aroundC1
=10 in Fig. 11d. The existence of an oscillating linear mode
of a localized discrete solution potentially opens the possi-
bility to find breathing DCSs in arrays of coupled quadratic
nonlinear cavities. Indeed, we observed oscillating solutions.
Such a purely oscillating soliton solution was recently found
in arrays with the Kerr nonlinearityf31g. Unlike in the Kerr
case we found oscillating solitons only for relatively large
SH detuningD2 sinset in Fig. 11d. In this case the mean-field
model is valid only for very high-Q cavities.

VII. VALIDITY OF MEAN-FIELD APPROACH

All results presented in the previous parts of this paper
were obtained by solving the mean-field model derived in
Sec. II. We are now going to compare these predictions with
numerical solutions of the complete round-trip model. Be-
fore starting we should remember the assumptions that were
made to obtain the mean-field equations. The cavity was as-
sumed to be doubly resonant, exhibiting high finesse at both
FW and SH frequenciesf13,24g. To achieve this goal the
reflection coefficients of all mirrors should be close to unity
u1−rF,Su!1. In addition, the effective cavity length should
be small enough that coupling, walk-off, mismatch, and fre-
quency conversion have an effect only after many round
trips. To reveal the range of validity of the mean-field model
we solved numerically the system of forward and backward
wavess1d with appropriate boundary conditionss2d for dif-
ferent values of cavity parameters, such as reflectivity, detun-

ing, and effective length. For comparison we give all values
in units of the mean-field modelfsee Eqs.s6d ands7dg. How-
ever, even if we fix the parameters of the scaled mean-field
approach there are still degrees of freedom left in determin-
ing the parameters of the round-trip model. Here we used
different values of the cavity lengthl and of the mirror re-

flectivity rF,S, but kept the photon lifetimetph<2l / ṼFs1
−rF

2d constant. The resonator length is expressed in effective
nonlinear lengthslnl=1/ÎPFPSxeff

s2d where PF,S is the corre-
sponding guide power.

First, we determined the range of bistability of PW solu-
tions derived from both modelssFig. 12d. As was expected
the discrepancy between both models increases for large de-
tuning and increasing transmissivityTF,S=1−rF,S

2 of the mir-
rors sFig. 12d. If the reflectivity is large enoughs1.rF,S

.0.98d, the results of the mean-field model coincide almost
exactly with the round-trip one, even for large cavity detun-

FIG. 12. The boundary of PW bistability domain for different
mirror reflectivities and in the mean-field modelsD2=−2,d=0.6d.

FIG. 13. The intracavity field amplitude at the output mirror for
PW solution vs the driving amplitudeE in the mean-field approxi-
mation scurve 1d and for the round-trip model forrF=0.95,l
=4.9lnl scurve 2d; rF=0.92,l =7.72lnl scurve 3d; rF=0.9,l =9.55lnl

scurve 4d. Parameters:D1=−12.9,D2=−2,d=0.6.

FIG. 14. Intracavity field amplitude profiles of bright solitons
for different round-trip parameterssC1=5,D1=−6,D2=−2,d=0.6d.
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ing suD1u,20d. Although for a relative large negative cavity
detuning the mean-field model predictions are not exact even
for rF<0.95, there is still a good qualitative agreement.
There are appreciable quantitative discrepancies forrF
<0.9 sline 4 in Fig. 13d. This involved behavior of low-Q
cavities can be understood by accounting for the large fre-
quency conversion upon one passage.

To investigate the validity of the mean-field model for
non-PW solutions bright DCSs for different round-trip pa-
rameters have been calculatedsFig. 14d. It is evident that also
in this case the mean-field model holds down to mirror re-
flectivities of 0.95. Going further it turns out that the mean-
field model gives qualitatively correct solutions provided that
the reflectivity exceeds 0.92.

VIII. CONCLUSION

In conclusion, we have investigated the optical response
of a chain of identical coupled cavities endowed with a qua-

dratically nonlinear material. Starting from a round-trip
model we have derived mean-field equations and have
checked their validity. On the basis of this mean-field ap-
proach we have characterized stationary solutions of the dis-
crete dissipative nonlinear system by means of asymptotic
methods. Solving a linearized version of the original equa-
tions allowed for an almost exact description of the soliton
tails and thus for the identification of domains in parameter
space where discrete cavity solitons of different topology
may exist. A simple analytical formula was obtained for
evaluation of the effective soliton width. Based on these ana-
lytical studies we found by numerical means bright DCSs
with evanescent as well as oscillating tails and dark stag-
gered DCSs. All these soliton branches emanate subcritically
from the bifurcation point. Based on a linear stability analy-
sis of bright DCSs it was shown that even DCSs destabilize
due to the action of an antisymmetric eigenmode, which
transforms into the translational mode in the quasicontinuous
limit sstrong couplingd.
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